Measuring Ocean Acidification in Blue and Green Waters: Capabilities and Challenges

Robert H. Byrne
University of South Florida
College of Marine Science
May 22, 2014 SAML Acidification Workshop

Outline

1. Measurement Capabilities and Limitations
2. Lessons Learned from Internal Consistency Evaluations
3. Challenges in the Coastal Zone (heterogeneity and non-carbonate alkalinity)
4. Remedy for Monitoring-Challenges Created by High Spatial and Temporal Variability
5. Remedy for Problems Created by Total-Alkalinity Ambiguities
What CO$_2$ System Parameters Should Be Measured?

Characteristics of Current Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Precision</th>
<th>Calibration</th>
<th>Matrix Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC</td>
<td>\pm 1-2 μM</td>
<td>CRM</td>
<td>No</td>
</tr>
<tr>
<td>TA</td>
<td>\pm 2-4 μM</td>
<td>CRM</td>
<td>Yes</td>
</tr>
<tr>
<td>pH</td>
<td>\pm 0.0004-0.0010</td>
<td>Internal</td>
<td>No (?)</td>
</tr>
<tr>
<td>fCO$_2$</td>
<td>\pm 0.1%</td>
<td>Gas standards</td>
<td>No</td>
</tr>
<tr>
<td>[CO$_2$]</td>
<td>\pm 2%</td>
<td>Internal</td>
<td>No (?)</td>
</tr>
<tr>
<td>Ω</td>
<td>Highly variable</td>
<td>No direct observation</td>
<td>Possibly</td>
</tr>
</tbody>
</table>

Selection of Measured Parameters

Choices should be made in view of measurement resolution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Precision</th>
<th>Range/Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0.8</td>
<td>0.0004</td>
<td>2000</td>
</tr>
<tr>
<td>DIC (μmol/kg)</td>
<td>500</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>TA (μmol/kg)</td>
<td>220</td>
<td>2</td>
<td>110</td>
</tr>
<tr>
<td>pCO$_2$ (μatm)</td>
<td>1840</td>
<td>1</td>
<td>1840</td>
</tr>
</tbody>
</table>

Lessons Learned From Redundant Measurements

Internal Consistency and Saturation State Measurements

W1108C Cruise Track GOMECC-2 Cruise Track
TA Residuals (the salinity effect)

TA “corrected” for Organic Bases

Patsavas et al. (2014)
Coastal Zone Challenges (A)

1. **High temporal variability**
 (→ need for high-frequency measurements)

2. **High spatial variability**
 (→ need for measurements on broad spatial scales)

Response:
Multiple-parameter autonomous instrumentation
(e.g., MICA)
Principles of Spectrophotometric Measurements: pH, fCO$_2$, DIC, TA

$$pH_T = -\log (K_2^T e_2) + \log \left(\frac{R - e_1}{1 - R \frac{e_3}{e_2}} \right)$$

$$H_2I \leftrightarrow HI^- \leftrightarrow I^{2-}$$

$$K_2^T = \frac{[I^{2-}] [H^+]_T}{[HI^-]}$$

$$e_1 = \frac{2E_{HI}}{1E_{HI}}, e_2 = \frac{2E_I}{1E_{HI}}, e_3 = \frac{1E_I}{1E_{HI}}$$

MICA Measurements of Marine CO$_2$ System

Spectrophotometric Measurements
- fCO$_2$
- DIC
- pH
- (TA)

Measured and Calculated TA

(DIC-fCO$_2$ and DIC-pH)

![Graph depicting TA (µmol kg$^{-1}$) against Latitude](image)

- ▲ UM Discrete TA
- Green line: Calculated TA from USF DIC and pH
- Blue line: Calculated TA from USF DIC and fCO$_2$

![Map and Depth Profile of CLIVAR P16N](image)

Byrne et al. (2010) GRL 37: L02601
Anthropogenic pH change in the North Pacific Ocean

Byrne et al. (2010) *GRL* **37**: L02601

Coastal Zone Challenges (B)

Large non-carbonate alkalinity contributions to TA imply that TA cannot be rigorously interpreted in CO₂ system calculations

Response:
In Situ Instrumentation
Sample locations

TA Residuals
Yang et al. (2014)

Calculation of Parameters at In Situ Conditions

Shipboard Measurements
- DIC + TA
- DIC + pH (25°C) or pCO₂ (20°C)

Calculated Pair
- TA(measured) + DIC(measured) → TA(calculated) + DIC(measured)

In Situ Parameters
- fCO_2, pH, [CO₃²⁻]ₜ

<table>
<thead>
<tr>
<th>Shipboard Measurements</th>
<th>Calculated Pair</th>
<th>In Situ Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIC + TA</td>
<td>TA(measured) + DIC(measured)</td>
<td>fCO_2, pH, [CO₃²⁻]ₜ</td>
</tr>
<tr>
<td>DIC + pH (25°C) or pCO₂ (20°C)</td>
<td>TA(calculated) + DIC(measured)</td>
<td>fCO_2, pH, [CO₃²⁻]ₜ</td>
</tr>
</tbody>
</table>

Byrne et al. (2010) *Proceedings of Ocean Obs’09*
SEAS: in situ DIC and pH instrumentation

- Modular
- Spectrometer
- Three two-channel pumps
- Internal or external lamp options
- Configurable optical cell
- Data collection from up to four peripheral sensors (e.g., CTD, fluorometer, transmissometer, second SEAS instrument)
- Battery or externally powered
- Heater option
- Sampling rate (pH = 1 Hz, DIC = 1 per minute)
- Ambient-temperature pH and DIC measurements
- Rated to 1000 m depth
- Configurable for carbon system, nutrient, or trace metal analysis

Liu et al. (2013) *ES&T* 47: 11106-11114
Photometry

Photometer Characteristics

Perspectives on Future Sensor Development

• In situ measurements of compatible parameters are urgently needed (DIC-pH or DIC-fCO2)

• Over-determination (measurement of ≥3 parameters) is an important means of assessing sensor and measurement quality

• High-frequency measurements are required in coastal regions where variability is high

• Sensors with poorer precision but high measurement frequency may be suitable for many coastal regions

Carbonate Ion Measurement Characteristics

\[-\log[\text{CO}_3^{2-}]_T = \log\left(\frac{c_{\text{CO}_3}R_1}{e_2}\right) + \log\left(\frac{R - e_1}{1 - R\frac{e_3}{e_2}}\right)\]

Carbonate ion concentration profiles: calculated or measured spectrophotometrically